Introduction

The purpose of this application note is to describe the evaluation boards for either the HI3026 or HI3026A 8-bit ultra high speed analog to digital converters (ADC). The main difference between the two devices is the maximum conversion speed of 120 MSPS and 140 MSPS respectively. This document will use HI3026 for both devices. The boards are shipped with the device soldered onto the PCB. The evaluation board includes many discrete components along with op amps, buffers, logic level conversion (ECL to TTL and TTL to ECL) and a 10-bit D/A converter for reconstructing the output of the HI3026. After latching the HI3026, input data with a frequency divided clock, the analog signal can be regenerated by a 10-bit high speed D/A converter. The latched data can also be extracted externally via a 24 pin cable connector.

Board Description

The evaluation platform is a two layer board optimized for high frequency operation. The supplies to the board should be low noise clean regulated linear power supplies. To ensure reliable performance, use the recommended operating conditions and never exceed the absolute maximum ratings shown in Table 1 and Table 2.
The signals in and out of the board are defined in the Pin Description table, which details various connectors and their function.

TABLE 1. OPERATING CONDITIONS

	MIN (V)	TYP (V)	MAX (V)	
SUPPLY VOLTAGE				
V_{CC}	4.75	5.0	5.25	
GND	-	0	-	
V_{EE}	-5.50	-5.0	-4.75	
+Amp	+3	+5	+7	
-Amp	-7	-5	-3	
\|(+AMP)-(-AMP)		9	10	11
ANALOG INPUT				
AMP.IN	-0.75	0	1.05	
DIR.IN (VP-P)	1.5	2.0	2.2	
CLOCK INPUT				
CLK.IN (VP-P)	0.75	0	1.05	

TABLE 2. ABSOLUTE MAXIMUM RATINGS

MIN (V)		MAX (V)
V_{CC}	-0.5	7.0
$\mathrm{~V}_{\mathrm{EE}}$	-7.0	0.5
+ Amp	-0.5	7.0
$-A m p$	-7	0.5

Typical Performance Curves (HI3026A)

FIGURE 1. ENOB vs FIN

FIGURE 3. ENOB vs F_{IN}

FIGURE 5. ENOB vs FIN

FIGURE 2. SINAD AND SNR

FIGURE 4. SINAD AND SNR

FIGURE 6. SINAD AND SNR

Pin Descriptions

PIN NO.	SYMBOL	I/O	STANDARD I/O LEVEL	CURRENT	DESCRIPTION
CON1	AMP.IN	1	0.95Vp-p		Doubles the analog input signal amplitude using the operational amplifier. The input impedance is 50Ω.
CON2	DIR.IN	1	$2.0 \mathrm{Vp}-\mathrm{p}$		AC coupling input. suitable for sine waves and other repeating waveforms. The input impedance is 50Ω.
CON3	CLK.IN	1	$1.0 \mathrm{Vp}-0$		The HI3026 operates at the PECL level clock using the sine wave-to-PECL conversion circuit. The input impedance is 50Ω.
CON4	P1 Side OUT	0	0 to -1V		Allows the D/A converted waveform of the HI3026, port 1 side data to be observed. The output impedance is 50Ω.
CON5	P2 Side OUT	0	0 to -1V		Allows the D/A converted waveform of the HI3026, port 2 side data to be observed. The output impedance is 50Ω.
	V_{CC}	1	5.0 V	0.8A	The inside of the board is divided into analog and digital systems.
	GND	1	0 V		
	$\mathrm{V}_{\text {EE }}$	1	-5.0V	-0.6A	
	+AMP	1	5.0 V	40 mA	+ side power supply for the operation amplifier.
	-AMP	1	-5.0V	-40mA	- side power supply for the operation amplifier.
CON7	P1 side DATA	0	TTL		The HI3026, port 1 side data output is latched at the frequency divided clock and then output.
CON8	P2 side DATA	0	TTL		The HI3026, port side data output is latched at the frequency divided clock and then output.

Block Diagram

Board Adjustments and Settings

1. VRB.R1: HI3026, VRB voltage adjusting volume.
2. VRT.R2: HI3026, VRT voltage adjusting volume.
3. OFFSET.R3: Adjusting volume for matching the AMP.IN input and DIR.IN input signal ranges to the HI3026, input range.
4. FULL SCALE.R4: Full-scale adjusting volume for the port $1 \mathrm{D} / \mathrm{A}$ output. (-1V: Typ.)
5. FULL SCALE.R5: Full-scale adjusting volume for the port 2 D/A output. (-1V: Typ.)
6. S1: Switching junction for the dual analog input pins.

Set as follows according to the input pins used.

SYMBOL JUNCTION	A	B
AMP.IN	OPEN	SHORT
DIR.IN	$0.1 \mu \mathrm{~F}$	$10 \mathrm{k} \Omega$

7. S2:	Setting junction for the clock frequency division ratio. The operating speed after latching is determined by the frequency division ratio set here. When set to CLK OUT, it operates according to the HI3026, clock output.
8. SW1 SELECT:	HI3026, output mode selector switch.
9. SW2 A/D INV:	HI3026, output polarity inversion switch.
10. SW\# D/A INV:	D/A converter output polarity inversion switch.

Notes on Board Operation

1. The factory settings for the HI3026, Evaluation Board are as follows:

VRB.R1 $=1.5 \mathrm{~V}$	FULL SCALE.R4 $=-1 \mathrm{~V}$	S1 A \cdots OPEN, B \cdots SHORT		
VRT.R2 $=3.0 \mathrm{~V}$	FULL SCALE.R5 $=-1 \mathrm{~V}$	S2 8 \cdots SHORT (1/8 frequency division)		
OFFSET.R3 $=2.25 \mathrm{~V}$			\quad	
:---				

When using the board in this condition, the input signals should be input at the amplitudes shown below.
(The frequency is set as desired.)
2. When the analog signal is input from the CON1 (AMP.IN) pin, IC2:CLC404 limits the input dynamic range of the A/D converter's analog input signal according to the +AMP and -AMP supply voltages. The power supply for the operational amplifier can also be shifted to $+\mathrm{AMP}=+7.0 \mathrm{~V}$ and $-\mathrm{AMP}=-3.0 \mathrm{~V}$ to allow use with a wider input dynamic range.
3. When the analog input signal is a sine wave or other repeating waveform, the signal can be input form the CON2 (DIR.IN) pin with AC coupling. In these cases, the input dynamic range is not limited by the +AMP and -AMP supply voltages, but the VRT level may be limited by IC3:NJM3403A. Therefore, the power supply for the operational amplifier should be shifted in the same manner as in 2. above.
4. In the evaluation board of the HI3026, CLC404 (Comlinear) is employed for IC2 to drive the analog input signal. Though, CLC505 (Comlinear) can also be used instead of CLC404, there should be little change in the peripheral circuit in this case.

ANALOG INPUT SIGNAL: CON1 (AMP.IN)

CLOCK INPUT SIGNAL: CON3 (CLK.IN)

Timing Diagram

Schematic Diagram

Schematic Diagram (Continued)

Component List

NO.	PRODUCT NAME	FUNCTION	NO.	PRODUCT NAME	FUNCTION
IC1	Hi3026	8-bit A/D converter	R2	RJ-5W-1K	$1 \mathrm{k} \Omega$ volume resistor
IC2	CLC404AJE	OP-AMP	R1, 4, 5	RJ-5W-2K	$2 \mathrm{k} \Omega$ volume resistor
IC3	NJM3403AM	OP-AMP	R3	RJ-5W-10K	$10 \mathrm{k} \Omega$ volume resistor
IC4	MC10H116L	ECL buffer	R46 to 50	RGLD4X621J	620Ω network resistor
IC5	MC10H136L	ECL Countor			
IC6, 7	74AS574N	TTL Latch	R6, 18, 19	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W}) \end{aligned}$	51Ω
IC8	100390	PECL \rightarrow TTL conversion	R7, 8	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W}) \end{aligned}$	510Ω
IC9, 10	MB767P	TTL \rightarrow ECL conversion	R9	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W})- \end{aligned}$	$7.5 \mathrm{k} \Omega$
IC11	MC10H124L	TTL \rightarrow ECL conversion	R10	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W}) \end{aligned}$	$22 \mathrm{k} \Omega$
IC12, 13	HI20201JCB	10-bit D/A converter	R11	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W}) \end{aligned}$	200k Ω
IC14 to 16	74ALS34	TTL Buffer	R12	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W}) \end{aligned}$	390k Ω
D1 to 3	TL431CP	Shunt regulator	R13, 2328 to 33, 37, 38	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W}) \end{aligned}$	82Ω
SW1 to 3	ATE1D-2F3-10	Toggle switch	R14, 24 to 27, 34 to 36,39 , 40	$\begin{aligned} & \text { FRD-25SR } \\ & (0.25 \mathrm{~W}) \end{aligned}$	130Ω
S1, 2	JX-1	Short pin	R15, 16, 43, 45	FRD-25SR 10.25 W	270Ω
CON1 to 5	01K0315	BNC connector	R17	FRD-25SR (0.25W	43Ω
CON6	TJ-563	Power supply connector	R20, 22, 42, 44	FRD-25SR (0.25W	1 k ,
CON7, 8	(FAP-2601-1202)	Flat cable connector	R21	FRD-25SR (0.25W	390Ω
L1 to 6	ZBF503D-00	Fernite-bead filter	R41	FRD-25SR (0.25W	620Ω
C1 to 6	Tantal capacitor	$33 \mu \mathrm{~F}$			
C7 to 12	Tantal capacitor	$1 \mu \mathrm{~F}$			
C15	Ceramic capacitor	$0.1 \mu \mathrm{~F}$			
All parts other than those listed above					
	Chip capacitor	$0.1 \mu \mathrm{~F}$			

NOTE: CON7 and 8 are not mounted when boards are shipped. (Manufacturer: YAMAICHI Electronics Co., Ltd.)

FIGURE 7. COMPONENT SIDE SILK DIAGRAM

FIGURE 9. SOLDER SIDE SILK DIAGRAM

FIGURE 8. COMPONENT SIDE PATTERN DIAGRAM

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation 7585 Irvine Center Drive Suite 100
Irvine, CA 92618
TEL: (949) 341-7000
FAX: (949) 341-7123

EUROPE

Intersil Europe Sarl
Ave. William Graisse, 3
1006 Lausanne
Switzerland
TEL: +41 216140560
FAX: +41216140579

ASIA

Intersil Corporation
Unit 1804 18/F Guangdong Water Building 83 Austin Road
TST, Kowloon Hong Kong
TEL: +852 27236339
FAX: +852 27301433

